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SUMMARY

A numerical method is employed to examine the �ow in symmetrical, two-dimensional branches of Y
shape and Tee shape. The methodology is based on a pressure-correction procedure within the frame
of unstructured grids. Speci�ed pressures are imposed at the outlets of the two branches. The area ratio
of the branch is allowed to vary in the range of 2–3. Separation of the �ow in the bifurcating region is
inevitable. With equal outlet pressures, symmetrical �ow patterns prevail except for the Y type branch
under the conditions of high Reynolds numbers and large area ratios. This implies that the Y-branch
�ow is more sensitive to small disturbances. It is shown that with a slightly higher pressure imposed
on one of the two branches the structure of the recirculating �ow for the Y type is greatly a�ected
and the �ow rate is reduced dramatically in the high-pressure branch channel. In contrast, the in�uence
on the Tee type branch is much lower since the �ow behaves like a jet impinging on a con�ned duct.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow through branching channels has been widely used in industrial applications, such as
piping systems and ventilation systems, and is encountered in human bodies. When �uid passes
the branch junction, it changes direction, leading to skew axial velocity pro�les, separation and
secondary �ows. These �ow characteristics are implicated to be a main factor to the pollutants
deposition in human respiratory system. The vascular system depends on the branches to
distribute blood. The arterial walls in the branching regions are exposed to high and low
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shear stresses which disturb local mass transfer and cause cell degradation. Therefore, the
atherosclerosis occurs mainly in these regions.
A most popular model used to study the bifurcating �ows is a 90◦ Tee junction, i.e. a

straight channel with a branch o�set at 90◦. Karino et al. [1] adopted a particle
suspension technique to identify that when part of the �ow is diverted into the branch
channel, it becomes inevitable for the �ow to separate from the corner of the junction and
a recirculation zone is formed unless the Reynolds is su�ciently low. Another recircula-
tion vortex may also appear along the outer wall of the main channel near the bifurca-
tion region. The sizes of the two recirculation zones depend on either the Reynolds number
or the �ow diversion ratio, de�ned as the ratio of the �ow rate through the side branch
to the total �ow rate. The two-vortex pattern is the most common to see, which covers a
wide range of diversion ratio. At extremely high diversion ratios of values greater than 0.9
for Re¿100, three vortices were found by Karino et al. The third vortex, which is much
smaller than the second one, is located at the inner wall of the main channel downstream
of the second one. Although the above observation made by Karino et al. was obtained in
tubing ducts, similar �ow patterns could be found in channel �ows with rectangular cross-
sections [2, 3] and in planar, two-dimensional calculations [2, 4, 5]. In the study of Liepsch
et al. [2] both the laser Doppler anemometry (LDA) measurements in a test rig with an
area ratio of 8:1 and the corresponding 2-D calculations indicated that with Re=515 and
diversion ratio of 0.23 there is no separation in the main channel. By increasing the di-
version ratio to 0.44 with Re=496, a recirculation zone could be seen. Three-dimensional
calculations conducted by Neary and Sotiropoulos [3] revealed that, in comparison with 2-
D calculations, closer agreement with the measurements of Liepsch et al. was achieved in
the recirculation region in the branch channel. This implies that the vortex �ow there is
mainly three-dimensional, rather than two-dimensional. The third vortex formed in the main
channel at high diversion ratios was captured in the predictions by Khodadadi et al. [4].
They also showed that the sizes of the two recirculation zones increase with the increasing
Reynolds number. However, as the diversion ratio increases, there exists a peak size value
for the recirculating vortices. Travers and Worek [6] examined the �ow in Tee junctions
with the branch protruding into the main duct using a computational method. It was shown
that the protrusion intensi�es the local pressure drop in the branch region and leads to a
greater overall pressure loss. It is common to specify �ow split between the branches as a
boundary condition in calculations. In addition to this type of boundary condition, the study
by Hayes et al. [5] also considered the boundary condition of equal pressures at the two
branch outlets. For the case with equal pressures the fractional �ow in the main duct in-
creases with increasing Reynolds number. The critical Reynolds number at which the �rst
recirculation zone appears in the side branch increases with increasing diversion ratio and
with decreasing side branch width. The �ows with side branches other than 90◦ have also
been investigated. Both the computations by Kawaguti and Hamano [7] and the experimental
work by Cho et al. [8] indicated that the �ow patterns are similar to those for the 90◦ Tee
junctions.
In this study the �ows in planar (two-dimensional), symmetrical branches are under in-

vestigation. Two di�erent bifurcation geometries are examined: a symmetrical Y branch with
90◦ branching angle and a symmetrical Tee branch (180◦ branching angle). The main di�er-
ence between two- and three-dimensional �ows lies in that secondary velocities in the trans-
verse directions are induced in the 3-D �ow, which complicates the �ow in the streamwise
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direction [9, 10]. However, the problems in 2-D are of interest because features such as sep-
aration, attachment and �ow reversal predominate the �ow structure.
By surveying the literature it is rather surprising that there are only a few works con-

cerning the symmetrical bifurcation. In the early work of Lynn et al. [11] a 60◦ Y branch
was examined. The area ratio, de�ned as the total cross-sectional area of the daughter chan-
nels downstream of the bifurcation to the area of the main channel upstream, was set at 1.
The results indicated that there is no �ow separation in the daughter branches. Bramley and
Dennis [12] considered a Y branch with an angle of 90◦. The �ow with a small area ratio of
1=

√
2 does not separate whereas in the wide daughter ducts (area ratio=

√
2) �ow separation

occurs for Re¿100. The sharp corners of the branch used by Bramley and Dennis [12] were
smoothed out in a later study [13]. It was found that the corner shape has little e�ects on the
�ow patterns. The in�uence of branching angle was also checked to �nd that the tendency to
separate increases with the angle. However, the results showed that the angle does not change
the size of the recirculation zone signi�cantly. El-Shaboury et al. [14] reported a study of
forced convection through a symmetrical Tee branch with area ratio of 2 for a wide range of
split �ow ratio �. For equal split ratio (�=0:5) the �ow is symmetrical and a recirculation
zone was found in each of the daughter channel. For split ratio not equal to 0.5 a second
vortex may be seen downstream of the main vortex along the opposite wall, depending on
the Reynolds number and the split ratio. The corresponding vortices in the two daughter
channels are not of equal size. The recirculating �ow strongly in�uences the distribution of
the shear stress and the wall heat �ux. The condition of equal split ratio was found to produce
maximum overall heat transfer and minimum pressure drop. Lou and Yang [15] examined the
blood �ow in a 2-D, symmetrical, aortic bifurcation. The arterial walls were assumed to be
rigid. No permanent recirculating vortices were found in the pulsatile �ow. But a temporary
recirculation region exists under certain conditions, for example, at a large area ratio. There are
no fundamental di�erences in the �ow structure between the Newtonian and non-Newtonian
models [16]. The e�ect of wall �exibility of the artery was accounted for in another study by
Lou and Yang [17]. It was revealed that the wall expansion tends to induce �ow reversals
during the decelerating systole, while contraction tends to restrict them during the diastole.
In the above works the �ows were assumed to be two-dimensional. A three-dimensional
numerical study for the �ow in a symmetrical bifurcation with an area ratio of 2.0 and a
branch angle of 60◦ was reported by Yung et al. [9]. It was seen that due to the centrifugal
force a secondary vortex �ow is induced in the branch. The secondary motion alters the
streamwise velocity pro�les. A region of reversed �ow was observed near the outer wall of
the branch except for the case of the lowest Reynolds number. An experimental investigation
using the LDA was carried out by Rieu et al. [10] to examine the �ow in a symmetrical
bifurcation with a rectangular cross-section of area ratio 0.8 and various branch angles. The
features such as the secondary vortex �ow, the shift of the maximum streamwise velocity
towards the inner wall, and the recirculation zone along the outer wall of the branch could
be identi�ed in their results. It was noted that the recirculating vortex is formed at branching
angle of 180◦, but not detected for branching angles less than 90◦.
It can be concluded from the above reviews that the �ow is hardly separated in a Y branch

with the branching angle less than 90◦ and an area ratio less than 1. In this study we examine
the branching �ow with the area ratio in the range of 2–3. At these high area ratios �ow
reversal becomes inevitable. Two branching angles, 90◦ and 180◦, are under consideration.
Unlike the previous studies, in which the computational domain covered only half the �ow
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domain because the �ow was assumed to be symmetrical to the centreline of the main channel,
the entire �ow domain is considered in the present computations. Another di�erence is that
in most numerical studies the �ow rate is designated in each branch duct whereas it is
the pressure speci�ed as the outlet boundary condition in this study. It will be seen in our
results that with equal exit pressures the �ow may become asymmetrical due to the instability
embedded in the �ow when the area ratio and the Reynolds number become su�ciently
large. In addition, we will investigate the e�ects of slightly di�erent pressures prescribed on
the outlets. This is used to mimic the situation of non-exactly symmetrical con�gurations
existing in the real world.

2. MATHEMATICAL METHOD

The equations governing the steady, incompressible �ow in dimensionless form are given as

∇ •V = 0 (1)

∇ • (VV) = −∇P + 1
Re

∇2V (2)

Here the coordinates and the velocities are normalized using half the inlet width c and the
mean velocity �V averaged over the inlet. The dimensionless pressure and Reynolds number
are given as

P=
p

� �V
2 (3)

Re=
� �Vc
�

(4)

In the Y branch con�guration the two branches are skew to the main channel. To deal with
this skew geometry, a usual way is to adopt curvilinear coordinates and a transformation of the
coordinates for the governing equations is necessitated. A structured grid can be constructed to
cover the entire domain. However, for the Tee branch geometry the grid nodes in the regions
next to the main channel become redundant. To avoid grid redundancy, zonal approaches have
been proposed [18–20]. By this procedure the grids in the main and the branch channels are
generated separately and the solution in each of the zones is sought sequentially. Iteration over
these zones must be undertaken to ensure coupling of the �ows in the di�erent zones. An
alternative way, without requiring solution iteration, is to adopt the unstructured grid. Another
merit in using the unstructured grid is that there is no need to make coordinate transformation,
which preserves the strong conservation property of the original di�erential equations. In the
following, the methodology suitable for unstructured grids is described brie�y. For more details
the reader are referred to Reference [21].
The above equations are of divergence form. Integrating the momentum equation over a

polyhedral cell of n faces and applying divergence theorem the following discretized equation
can be obtained:

n∑
f=1
(�V • s)f�f=

n∑
f=1
(�∇� • s)f + S (5)
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Figure 1. Illustration of a face e between the primary cell P and a neighbouring cell E.

Here the dimensional form is employed and � represents a velocity component. The term
on the left-hand side designates the convection �ux through face f and the �rst term on
the right-hand side the di�usion �ux. The summations are over the n faces. The last term S
denotes the volume integral of the pressure gradient.
In the convection �ux the face value �f is estimated by the central di�erence. An important

issue is the determination of the di�usion �ux. Consider a face e in Figure 1. Let s be
surface vector of the face and TPE be the vector directed from the primary cell node P to the
neighbouring cell node E. In the past decade a number of expressions have been proposed to
represent the di�usion �ux. As shown in Reference [21], these approximations are equivalent
to the following form:

Fde =
�es2

TPE • s (�E − �P) + �e∇�e • (s − d) (6)

where d is a vector in the direction of TPE , de�ned by

d=
s2

TPE • s TPE (7)

The gradient at the face ∇�e is approximated using interpolation form the two adjacent nodes
P and E

∇�e=(1− fP)∇�P + fP∇�E (8)

In the present method the velocity and the pressure are collocated at the cell centres.
To enforce mass conservation on each cell, it is needed to calculate the velocity at cell
face:

Ve=Ve − (De∇pe −De∇pe) (9)
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The overbars denote interpolation from the two nodes P and E, similar to Equation (8). The
mass �ux through the face is then estimated by

ṁe= ��e �Ve • s − APE[(pE − pP)− ∇pe • TPE] (10)

where

ApE = ��eDe
s2

TPE • s (11)

Following the SIMPLE algorithm of Patankar [22], the correction of mass �ux is linearly
related to the pressure correction as

ṁ′
e =− ��eDe∇p′

e • s

≈ ApE(p′
P − p′

E)− ��eDe∇p′
e • (s − d) (12)

Forcing the corrected velocity �eld to satisfy the continuity constraint leads to a pressure-
correction equation.

APp′
P=

n∑
C=1
ACp′

C + Sp1 + Sp2 (13)

where

Sp1 =−
n∑
f=1
m∗
f (14a)

Sp2 =
n∑
f=1

��fDf∇p′
f • (s − d) (14b)

The Sp2 term, representing the contribution of the nodes additional to the ones adjacent to the
cell faces, is equivalent to the cross derivatives of the pressure gradient when using curvilinear
coordinates. It can be shown that this term disappears when the vector TPE is in the same
direction as the surface vector s because, then d becomes identical to s. In the past, this
term was totally ignored during solution iteration due to the di�culty to handle these ‘corner’
nodes in unstructured grid calculations. However, as learned from structured grid experience,
neglecting the corner node contribution may deteriorate convergence e�ciency if the grid is
greatly ‘skew’. To take account of this term a successive-correction procedure was employed.
It was shown [21] that only two correction steps bring about the most e�cient and stable
solution.
The solution procedure is similar to that of SIMPLE algorithm. The momentum equation

and the pressure-correction equation are solved sequentially. After the pressure correction is
yielded, the velocity and the mass �ux are upgraded accordingly. The sequence of solution
iteration is carried out until convergence criteria are reached.
The boundary condition is assumed to be a fully developed �ow at the inlet of the main

channel. As for the branch outlets, the pressure boundary condition is imposed. When the
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static pressure is speci�ed at the outlet boundary, the mass �ux can be calculated in a similar
manner as in Equation (10).

ṁout = ��b(Vb) • sb − �bDP s2b
TPb • sb [(pb − pP)− ∇pb • TPb] (15)

The subscript b denotes the boundary node. The boundary velocity is yielded via the �rst-
order extrapolation, namely, Vb=VP. The pressure gradient at the boundary can be derived
from the following relationship for a variable, say, �:

�b − �p=∇� • �pb ≈ 1
�v

[
�bsb +

∑
f �=b
�fsf

]
(16)

where the summation is taken over all the surrounding faces except for the boundary face.

3. VALIDATION TESTS

The method described above is veri�ed for a number of two-dimensional problems including
a Y branch and a Tee junction. In addition to the pressure boundary condition, another type
of boundary condition, �xed split �ow in each branch channel, will be encountered in the
validating tests. For this condition the velocities at the exits are adjusted after each solution
iteration such that the mass �ux in each branch is kept at the speci�ed �ow rate.
Case I. Symmetrical Y branch �ow: This case has been examined by Bramley and

Sloan [13]. The �ow was assumed to be symmetrical and, thus, only half the domain was
used in their calculations. In the present calculations the entire domain was considered. To
ensure �ow symmetry one half of the �ow rate was enforced on the two exits. For the con-
�guration of area ratio of

√
2 �ow separation occurs at the corners where the �ow bifurcates.

The dependence of the length of the recirculating vortex on the Reynolds number for 60◦, 90◦

and 120◦ branching angles is shown in Figure 2. It needs to be noticed that the bifurcating
corners were smoothed out in the computations of Bramley and Sloan while sharp corners
were used in the present study. It is evident from Figure 2 that this di�erence in the corner
geometry has little e�ect on the vortex length. Flow details reveal that with the sharp corners
the separation occurs right at the corners whereas with the corners rounded the separation
point is shifted to the location about one half of the inlet width downstream.
Case II. Y branch �ow with prescribed pressure boundary condition: The second case

considers a 90◦ Y branch with di�erent pressures speci�ed at the two outlets. The abscissa in
Figure 3 represents the pressure di�erence normalized by � �V

2
=2. The ordinate is the fraction of

the �ow rate through the low-pressure branch divided by the total �ow rate. Both predictions
by the present calculations and by Kelkar and Choudhury [23] indicate a linear relationship
between the �ow rate and the pressure di�erence.
The cases tested in the following concern a Tee junction, not the symmetrical Tee branch

as will be examined. The Tee junction is made of a straight channel with a perpendicular
side branch.
Case III. Tee junction �ow with speci�ed �ow split condition: For this case the �ow rates

in the two branches are �xed. The �ow is inevitably separated on the inner wall of the side
branch. The variation of the reattachment location with the Reynolds number for di�erent
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Figure 2. Comparison of the recirculating vortex length in case I with
the predictions by Bramley and Sloan.

0 0.5 1 1.5 2
0.5

0.55

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Present
Kelkar&Choudhury

∆P

0.6

m
1/

m
in

Figure 3. Comparison of the fractional �ow rate in case II with the predictions by Kelkar and Choudhury.

split numbers is displayed in Figure 4. The split number is de�ned as the ratio of the �ow
rate of the main branch to the total �ow rate. Remarkable coincidence with the predictions
of Hayes et al. [5] is obtained. Further approval of the present method is given in Figure 5
which shows close resemblance in the streamwise velocity pro�les at three locations in the
separation region between the predictions and the measurements of Liepsch et al. [2]. In the
�gure v is the velocity along the side duct, which is normalized by the mean velocity in this
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Figure 4. Comparison of the reattachment point in case III with the predictions by Hayes et al.

branch V . In this test the �ow split is 0.56 and the Reynolds number is 496. The value of
496 is based on the hydraulic diameter for a rectangular duct with an aspect ratio of 8:1. It
corresponds to Re=140 when half the inlet width is used as the characteristic length.
Case IV. Tee junction �ow with equal exit pressures: For this case equal pressures are

prescribed on the exits of the main channel and the side branch. The e�ects of the Reynolds
number on the �ow rate of the main branch are presented in Figure 6. The agreement with
the predictions of Hayes et al. [5] and Kelkar and Choudhury [23] is excellent.

4. RESULTS AND DISCUSSION

The con�gurations for the Y branch and the Tee branch are shown in Figure 7. It is noted that
all the lengths are scaled by half the width of the main channel c. Therefore, the dimensionless
width of the branch channels d simply represents the ratio of the total area of the branches to
the area of the main channel. The length of the main channel is �xed at 2.5 units while that
of the branch channels is in the range of 61–81 units, depending on their width. There are a
number of recirculating vortices formed in the branches. As will be seen later, the size of the
main vortex in the vicinity of the bifurcating point is within 25 units and the reattachment
point of the last vortex will not exceed 40 units. Therefore, there is enough space for the
�ow to recover from separation and to approach the fully developed state. The choice of grids
has been carefully made. The grid is non-uniformly distributed with a larger number of lines
clustering in the bifurcation region, which is shown in Figure 8. In the end, the total number
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Figure 5. Comparison of the streamwise velocity at three locations in
case III with the measurements of Liepsch.

of cells in the streamwise direction ranges from 240 to 280 and the numbers in the normal
direction in the branch channels are 20, 25 and 30 (40, 50 and 60 in the main channel)
for the cases with channel widths of 2, 2.5 and 3, respectively, for the Y branch whereas
the corresponding cell numbers for the Tee branch are about 280–290 in the streamwise
direction and 25, 30, 35 in the normal direction. To verify the grids adopted an example of
our mesh re�nement test results is demonstrated in Figure 9 by showing surface vorticity on
the inner wall of the upper branch for the Y branch with d=3 and Re=600. The testing
work proceeds in two stages. In the �rst stage the cell number in the normal direction Ny
is gradually increased from 25 to 40 while the total cell number in the streamwise direction
is �xed at 340. It is seen from Figure 9(a) that the distributions of the vorticity on the
wall surface become nearly identical for Ny¿28. In the second stage the number of cells in
the streamwise direction Nx is allowed to vary in the range form 240 to 320 with Ny=30.
Figure 9(b) shows that the results are almost indistinguishable for Nx¿280.
To check the in�uence of the branch channel width three cases are under considera-

tion: d=2, 2.5 and 3. Equal pressures are imposed at the exits of the two branches.
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Figure 6. Comparison of the fractional �ow rate in case IV with the predictions
by Hayes et al. and Kelkar and Choudhury.

The characteristic lengths associated to �ow separation are shown in Figures 10 and 11 for
d=2 and 3, respectively. As seen in Figure 7, X1, X3 and X5 are the lengths of the three
recirculating vortices arising in the �ow while X2 and X4 denote the separation points of the
second and the third vortices. For the case with small d of 2 only one recirculating vortex is
found at the inner wall downstream of the bifurcation corner in each branch. The size of this
vortex is linearly proportional to the Reynolds number for Re¿100. When d is enlarged to 2.5
and 3, a weaker vortex is found at the outer wall for the Y branch and, further, a third one at
the side of the main vortex in the Tee branch, which is schematically illustrated in Figure 7.
The �ow patterns in the two branches are identical in the Tee branch since the correspond-
ing characteristic lengths are exactly the same. However, for the Y branch some di�erences
are visible as Re reaches 600 for d=2:5 (not shown in the �gure) and 400 for d=3. The
asymmetry is believed to be attributed to the �ow instability which is often encountered in
expansion �ows. It has been observed that for the �ow through a symmetric di�user [24, 25]
or through a symmetrical sudden expansion [26, 27] there exist two recirculating vortices of
di�erent sizes on the two channel walls when the Reynolds number exceeds a critical value.
This critical Reynolds number Recr depends on the expansion ratio; the larger the expansion
ratio, the smaller is the Recr. It is known that blood �ows in the vascular system are non-
Newtonian. A recent study by Neofytou and Drikakis [28] examined non-Newtonian �ows
through a symmetric expansion by using three models. It was shown that, similar to Newto-
nian �ows, symmetry breaks at a critical point. This critical point depends on the Reynolds
number as well as the speci�c parameters included in each model. In all the above-mentioned
studies the �ow was assumed to be steady and two-dimensional. Mallinger and Drikakis [29]
have investigated a three-dimensional pulsatile �ow in a circular tube with an axisymmetric
stenosis. Their simulations revealed that instability initiates inside the stenosis, resulting in a
breaking of the �ow axisymmetry in a three-dimensional manner. It is generally believed that
instability originates from the shear layers separating the main stream and the recirculating
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�ows. For su�ciently large Reynolds numbers small disturbances embedded in the shear layer
may be ampli�ed to form wavy �ows. Due to con�nement of the expanded channel the shear
layers on the two edges of the incoming jet a�ect each other, resulting in alternating shedding
of vortices and, then, �ow asymmetry [30]. In the sudden expansion �ow, the di�erence in the
size between the two recirculation zones increases rapidly when the Reynolds number exceeds
the critical value. However, as seen in Figure 11(a), the di�erence is minor in the branching
�ow. This result can be understood in view of the fact that in the sudden expansion �ow the
two shear layers are on the two sides of a single main stream whereas each individual layer
exists in its own branch in the branching �ow. Therefore, the interaction between the two
shear layers is intensive for the former; a perturbation occurring in one layer will easily be
detected by the other layer. As for the latter, the e�ect of the perturbation is mostly restricted
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Figure 8. Illustration of the grid arrangement in the bifurcation region.
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Figure 9. Grid re�nement tests for the Y branch �ow with d=3
and Re=600: (a) test of Ny; and (b) test of Nx.

in the local branch. To trigger asymmetric �ow, asymmetric perturbations in the two branches
are required. The asymmetric perturbations can be created via both, as done in the present
study, the use of asymmetric linear equation solvers and the round-o� errors of the computer
itself [31]. In Reference [29] a time-dependent white-noise perturbation was imposed on the
inlet velocity to simulate the instability.
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Figure 10. Variation of the characteristic lengths of the vortices for:
(a) Y branch; and (b) Tee branch with dp=0 and d=2.
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Figure 11. Variation of the characteristic lengths of the vortices for:
(a) Y branch; and (b) Tee branch with dp=0 and d=3.

In practical applications, the con�gurations of the two branches may not be exactly iden-
tical. To mimic this situation, a slight di�erence between the two exit pressures is allowed.
Two pressure di�erences dp=0:02 and 0.05 were examined. High pressure level prevails
in the lower branch. Figure 12 for d=2 shows that as the Reynolds number increases,
the recirculating �ows in the two branches gradually di�er in size, with a larger vortex
in the lower branch and a smaller one in the upper branch. The di�erence in the lengths of
the two vortices in the Tee branch �ow is so small that the �ow is nearly symmetrical. The
linear relationship between vortex length and Reynolds number still exists for large Reynolds
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Figure 12. Variation of the characteristic lengths of the vortices for:
(a) Y branch; and (b) Tee branch with dp=0:05 and d=2.
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Figure 13. Variation of the characteristic lengths of the vortices for:
(a) Y branch; and (b) Tee branch with dp=0:05 and d=3.

numbers. For the Y branch the second vortex in the upper branch, seen in the equal exit pres-
sure case with d=2:5 and 3, disappears, which is shown in Figure 13(a). The second vortex
in the upper branch and the third vortex in the two branches altogether vanish in the Tee
branch �ow for d=2:5 (not shown), but persist for d=3 (see Figure 13(b)). It is noted that,
unlike the case with d=2, the main vortex in the upper branch becomes longer than that in
the lower branch. Some of the above features can be veri�ed in the streamline plots shown in
Figure 14. According to this �gure, the �ow patterns are not much a�ected by the appearance
of pressure di�erence for the Tee branch, but it does change the �ow structure signi�cantly
in the Y branch. In the latter, the second vortex in the upper branch is eliminated and the
vortices in the lower branch are greatly shortened and widened. The main vortex enlarged
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(a) (b) (c) (d)

Figure 14. Streamlines for Y branch with d=3, Re=400: (a) dp=0; and (b) dp=0:02; and for Tee
branch with d=3, Re=600; (c) dp=0; and (d) dp=0:02.
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Figure 15. Variation of the main vortex length in the lower branch
for: (a) Y branch; and (b) Tee branch.

in the transverse direction blocks the �ow passage and results in great impact on the �ow
rate in the lower branch, as will be seen later. The variation of the main vortex with Re for
di�erent con�gurations in the lower branch is illustrated in Figure 15. The in�uence of dp is
insigni�cant for the narrow branch with d=2, but not for the cases with d greater than 2,
especially in the Y branch �ow. In general, the main vortex length is reduced for d¿2 as
unequal pressure condition is imposed.
It is evident from Figure 16 that less �uid passes through the lower branch as higher

pressure is speci�ed. In the �gure R is the ratio of the �ow rate in this branch to the total
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Figure 17. Variation of the passage width in the daughter channels for:
(a) Y branch; and (b) Tee branch with d=3.

�ow rate. It is noticed that the �ow ratio is in the range of 0.4–0.5 for the Tee branch
while for the Y branch the �ow ratio can drop to less than 0.1 for d=3. This implies
that the Tee branch �ow is less sensitive to disturbances, which may be attributed to that,
as seen in Figure 14, the �ow at the bifurcation region behaves like a jet impinging on a
con�ned duct. The jet impingement �ow restricts the development of the main vortex in the
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transverse direction. For the Y branch �ow the enlarged width of the main vortex blockades
the passage of the lower branch. This can be veri�ed by examining the passage width Wp,
de�ned as the minimum width of the through-�ow passage illustrated in Figure 7, shown in
Figure 17 for d=3. The passage width increases with Re in the upper branch for Re¿100
and monotonically decreases in the lower branch for the Y branch as di�erent pressures are
implemented. As for the Tee branch, although the passage widths in both branches are reduced
as Re increases, the decreasing rate for the lower branch is higher than that for the upper
branch. Comparing the magnitudes of the passage widths for the two types of branch indicates
that this width, along with the �ow rate, is greatly a�ected in the Y branch �ow.

5. CONCLUSIONS

A methodology incorporating unstructured meshes and pressure boundary conditions has been
developed to examine the �ow in branching channels with width d=2, 2.5 and 3. The main
�ndings are summarized in the following:

(1) As equal pressures are speci�ed, the �ow in the Tee branch is symmetrical, irrespec-
tive of the branch width. However, slightly asymmetrical �ow patterns appear at large
Reynolds numbers in the Y branch �ow for branch area ratio d¿2:5. There is only a
main recirculating vortex found in each branch for both types of bifurcation with area
ratio d=2. The length of this vortex is, in general, linearly related to the Reynolds
number. For larger area ratios, a second vortex can be seen in the Y branch channels
and one more vortex in the Tee branch �ow.

(2) When a slightly higher pressure is imposed on one of the branches, the �ow becomes
asymmetrical except at low Reynolds numbers. For d¿2:5 the main vortex in the
high-pressure branch becomes shorter, but wider than the one in the low-pressure
branch. The increase in the width of this vortex blockades the �ow in the high-
pressure branch, resulting in decrease of �ow rate. Comparing the two types of branch,
the Y branch �ow is more sensitive to pressure disturbances, leading to a large change
in �ow pattern and a large variation in �ow rate between the two daughter channels.
The �ow in the Tee branch can be regarded as a jet impingement �ow, which has a
higher capability to resist disturbances.
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